
Maxino
Mario Alviano

Department of Mathematics and Computer Science
University of Calabria

87036 Rende (CS), Italy
Email: alviano@mat.unical.it

Abstract—Maxino is based on the k-ProcessCore algorithm,
a parametric algorithm generalizing OLL, ONE and PMRES.
Parameter k is dynamically determined for each processed
unsatisfiable core by a function taking into account the size of
the core. Roughly, k is in O(logn), where n is the size of the
core. Satisfiability of propositional theories is checked by means
of a pseudo-boolean solver extending Glucose 4.1 (single thread).

A VERY SHORT DESCRIPTION OF THE SOLVER

The solver MAXINO is build on top of the SAT solver
GLUCOSE [7] (version 4.1). MaxSAT instances are normalized
by replacing non-unary soft clauses with fresh variables, a
process known as relaxation. Specifically, the relaxation of
a soft clause φ is the clause φ ∨ ¬x, where x is a variable
not occurring elsewhere; moreover, the weight associated
with clause φ is associated with the soft literal x. Hence,
the normalized input processed by MAXINO comprises hard
clauses and soft literals, so that the computational problem
amounts to maximize a linear function, which is defined by
the soft literals, subject to a set of constraints, which is the
set of hard clauses.

The algorithm implemented by MAXINO to address such a
computational problem is based on unsatisfiable core analysis,
and in particular takes advantage of the following invariant:
A model of the constraints that satisfies all soft literals is an
optimum model. The algorithm then starts by searching such
a model. On the other hand, if an inconsistency arises, the
unsatisfiable core returned by the SAT solver is analyzed. The
analysis of an unsatisfiable core results into new constraints
and new soft literals, which replace the soft literals involved in
the unsatisfiable core. The new constraints are essentially such
that models satisfying all new soft literals actually satisfy all
but one of the replaced soft literals. Since there is no model
that satisfies all replaced soft literals, it turns out that the
invariant is preserved, and the process can be iterated.

Specifically, the algorithm implemented by MAXINO is K,
based on the k-ProcessCore procedure introduced by Alviano
et al. [2]. It is a parametric algorithm generalizing OLL [3],
ONE [2] and PMRES [8]. Intuitively, for an unsatisfiable core
{x0, x1, x2, x3}, ONE introduces the following constraint:

x0 + x1 + x2 + x3 + ¬y1 + ¬y2 + ¬y3 ≥ 3
y1 → y2 y2 → y3

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3). OLL introduces the following con-
straints (the first immediately, the second if a core containing

y1 is subsequently found, and the third if a core containing y2
is subsequently found):

x0 + x1 + x2 + x3 + ¬y1 ≥ 3
x0 + x1 + x2 + x3 + ¬y2 ≥ 2
x0 + x1 + x2 + x3 + ¬y3 ≥ 1

Concerning PMRES, it introduces the following constraints:

x0 ∨ x1 ∨ ¬y1 z1 ↔ x0 ∧ x1
z1 ∨ x2 ∨ ¬y2 z2 ↔ z1 ∧ x2
z2 ∨ x3 ∨ ¬y3

which are essentially equivalent to the following constraints:

x0 + x1 + ¬z1 + ¬y1 ≥ 2 z1 → y1
z1 + x2 + ¬z2 + ¬y2 ≥ 2 z2 → y2
z2 + x3 + ¬y3 ≥ 1

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3), and z1, z2 are fresh auxiliary variables.

Algorithm K, instead, introduces a set of constraints of
bounded size, where the bound is given by the chosen param-
eter k, and is specifically 2 · (k+1). ONE, which is essentially
a smart encoding of OLL, is the special case for k = ∞,
and PMRES is the special case for k = 1. For the example
unsatisfiable core, another possibility is k = 2, which would
results in the following constraints:

x0 + x1 + x2 + ¬z1 + ¬y1 + ¬y2 ≥ 3 z1 → y1 y1 → y2
z1 + x3 + ¬y3 ≥ 1

In this version of MAXINO, the parameter k is dynamically
determined based on the size of the analyzed unsatisfiable
core: k ∈ O(log n), where n is the size of the core.

The analysis of unsatisfiable core is preceded by a shrink
procedure [1]. Specifically, a reiterated progression search
is performed on the unsatisfiable core returned by the SAT
solver. Such a procedure significantly reduce the size of the
unsatisfiable core, even if it does not necessarily returns an
unsatisfiable core of minimal size. Since minimality of the
unsatisfiable cores is not a requirement for the Additionally,
satisfiability checks performed during the shrinking process
are subject to a budget on the number of conflicts, so that the
overhead due to hard checks is limited. Specifically, the budget
is set to the number of conflicts arose in the satisfiability
check that lead to detecting the unsatisfiable core; if such a
number is less than 1000 (one thousand), the budget is raised
to 1000. The budget is divided by 2 every time the progression
is reiterated.



Weighted instances are handled by stratification and in-
troducing remainders [4]–[6]. Specifically, soft literals are
partitioned in strata depending on the associated weight.
Initially, only soft literals of greatest weight are considered,
and soft literals in the next stratum are added only after a
model satisfying all considered soft literals is found. When
an unsatisfiable core is found, the weight of all soft literals
in the core is decreased by the weight associated with last
added stratum. Soft literals whose weight become zero are
not considered soft literals anymore.

Finally, a preprocessing step is performed on unweighted
instances, which essentially iterates on all hard clauses of
the input theory, sorted by length, and checks whether they
already witness some unsatisfiable core. Specifically, an hard
clause witnesses an unsatisfiable core if all literals in the clause
are the complement of a soft literal. If this is the case, the
unsatisfiable core is analyzed immediately. The rationale for
such a preprocessing step is that hard clauses in the input
theory are often small, and the smaller the better for the
unsatisfiable core based algorithms.

REFERENCES

[1] Mario Alviano and Carmine Dodaro. Anytime answer set optimization
via unsatisfiable core shrinking. TPLP, 16(5-6):533–551, 2016.

[2] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A maxsat
algorithm using cardinality constraints of bounded size. In Qiang Yang
and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 2677–2683. AAAI
Press, 2015.

[3] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In 28th International
Conference on Logic Programming, pages 211–221, Budapest, Hungary,
September 2012.

[4] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted)
partial maxsat through satisfiability testing. In SAT 2009, pages 427–440,
Swansea, UK, June 2009. Springer.

[5] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based
MaxSAT algorithms. Artificial Intelligence, 196(0):77–105, March 2013.

[6] Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving
boolean multilevel optimization problems. In 21st International Joint
Conference on Artificial Intelligence, pages 393–398, Pasadena, Califor-
nia, July 2009. IJCAI Organization.

[7] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In 21st International Joint Conference on
Artificial Intelligence, pages 399–404, Pasadena, California, July 2009.
IJCAI Organization.

[8] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using
core-guided MaxSAT resolution. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, pages 2717–2723, Québec City, Canada, July 2014.
AAAI Press.


