
Loandra: PMRES extended with preprocessing
Entering MaxSAT Evaluation 2017

Jeremias Berg∗, Tuukka Korhonen∗, and Matti Järvisalo∗
∗HIIT, Department of Computer Science, University of Helsinki, Finland

I. PRELIMINARIES

We briefly overview the Loandra MaxSAT solver as it
participated in the 2017 MaxSAT evaluation. We assume
familiarity with conjunctive normal form (CNF) formulas and
weighted partial maximum satisfiability (MaxSAT). Treating a
CNF formula as a set of clauses a MaxSAT instance consists
of two CNF formulas, the hard clauses Fh and the soft clauses
Fs, as well a weight function w : Fs → N.

Loandra makes extensive use of SAT-based preprocessing
using labels [3], [4]. In order to enable sound application of
most SAT-based preprocessing techniques for MaxSAT, each
soft clause C is first extended with a fresh label variable
lC . Afterwards the preprocessor is invoked on the clauses in
Fh∪{C ∨ lC | C ∈ Fs}. During execution the preprocessor is
forbidden from resolving on the added labels. Afterwards, the
preprocessed instance is converted back to standard MaxSAT
by treating all clauses in the preprocessor as hard and intro-
ducing a soft clause (¬lC) with weight w(C) for each added
label.

II. STRUCTURE AND EXECUTION OF LOANDRA

The architecture of Loandra consists of two closely inter-
leaved parts; the solver and the preprocessor. The solver is
a reimplementation of the PMRES MaxSAT algorithm [15]
extended with weight-aware core extraction (WCE) as de-
scribed in [6]. The preprocessor is the recently proposed tool
MaxPre [11], modified to support addition of clauses.

In more detail, whenever invoked on an MaxSAT instance
(Fh, Fs, w) Loandra first preprocesses the input instance as
described in [11]. Afterwards the preprocessed instance is
extracted from the preprocessor and given to the solver. When
initializing the solver, we follow [5] and do not introduce the
soft clauses of form (¬lC), but instead reuse the literals as
assumption variables to be used in core extraction. Then the
solver is invoked on the preprocessed instance. Except for
the base algorithm, Loandra also uses stratification and clause
hardening [1] as well as clause cloning through assumptions
and reusing assumption variables as relaxation variables [6].
This guarantees that the working formula is only modified
by adding clauses to it, making it possible to keep the state
of the internal SAT solver throughout the solving process.
During execution, all cardinality constraints added due to core
relaxation are also added to the preprocessor as well. When
the working formula is sufficiently modified, the the execution
is switched back to the preprocessor which attempts to further
simplify the modified formula, i.e. the original clauses with

some clauses hardened and the new cardinality constraints.
If the preprocessor is successful, the solver is reinitialized on
the modified formula. Loandra terminates whenever the solver
terminates. At this point the optimal model for the original
formula can be reconstructed from the preprocessor.

III. DETAILS ON THE COMPETITION BUILDS

There are three version of Loandra competing in the 2017
MaxSAT evaluation.

• LOANDRAI , which follows the description given above.
• LOANDRAP , which only invokes its preprocessor once

and then runs the solver on the preprocessed instance.
• LOANDRAS , which only uses its solver, not invoking the

preprocessor at all.
These solvers are built on top of the open source Open-WBO
system [13], [14] and use Glucose 3.0 [2] as the internal SAT
solver. All preprocessing calls are done with label matching
turned off, with the SKIPTECHNIQUE parameter set to 20, and
using a technique loop with blocked clause elimination [10],
unit propagation, bounded variable elimination [8], subsump-
tion elimination, self-subsuming resolution [8], [9], [12] as
well as group-subsumed label elimination [7], [11] and binary
core removal [11]. See [11] for more details on the settings
of MaxPre. The additional preprocessing step is attempted
whenever more than 500 clauses have been hardened since
the preprocessing attempt.

IV. COMPILATION AND USAGE

Building and using Loandra resembles building and using
Open-WBO. A statically linked version of Loandra in release
mode can be built from the code by first running MAKE LIB
in the maxpre subfolder and then MAKE RS in the base folder.
One significant difference to Open-WBO is the need of C++11
features for building Loandra.

After building, Loandra can be invoked from the terminal.
Except for the formula file, Loandra accepts a number of
command line arguments; the flag “-inpr” enables execution
following LOANDRAI , the flag “-pre” enables execution fol-
lowing LOANDRAP and the flag “-printM” prints out the
optimal model of the instance, and not only its cost. The rest
of the flags resemble the flags accepted by Open-WBO; invoke
./loandra static –help-verb for more information.

REFERENCES

[1] C. Ansótegui, M. L. Bonet, J. Gabàs, and J. Levy, “Improving SAT-
Based Weighted MaxSAT Solvers,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 7514. Springer, 2012, pp. 86–101.



[2] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving Glucose
for Incremental SAT Solving with Assumptions: Application to MUS
Extraction,” in Proc. SAT, ser. Lecture Notes in Computer Science, vol.
7962. Springer, 2013, pp. 309–317.

[3] A. Belov, M. Järvisalo, and J. Marques-Silva, “Formula Preprocessing
in MUS Extraction,” in Proc. TACAS, ser. Lecture Notes in Computer
Science, vol. 7795. Springer, 2013, pp. 108–123.

[4] A. Belov, A. Morgado, and J. Marques-Silva, “SAT-Based Preprocessing
for MaxSAT,” in Proc. LPAR-19, ser. Lecture Notes in Computer
Science, vol. 8312. Springer, 2013, pp. 96–111.

[5] J. Berg, P. Saikko, and M. Järvisalo, “Improving the Effectiveness of
SAT-Based Preprocessing for MaxSAT,” in Proc. IJCAI. AAAI Press,
2015, pp. 239–245.

[6] J. Berg and M. Järvisalo, “Weight-Aware Core Extraction in SAT-Based
MaxSAT Solving,” in Proc. CP, ser. Lecture Notes in Computer Science,
vol. ????, pp. ??? – ??? (to appear).

[7] J. Berg, P. Saikko, and M. Järvisalo, “Subsumed label elimination
for maximum satisfiability,” in Proc ECAI, ser. Frontiers in Artificial
Intelligence and Applications, G. A. Kaminka, M. Fox, P. Bouquet,
E. Hüllermeier, V. Dignum, F. Dignum, and F. van Harmelen, Eds.,
vol. 285. IOS Press, 2016, pp. 630–638.

[8] N. Eén and A. Biere, “Effective Preprocessing in SAT Through Variable
and Clause Elimination,” in Proc. SAT, ser. Lecture Notes in Computer
Science, vol. 3569. Springer, 2005, pp. 61–75.

[9] J. Groote and J. Warners, “The propositional formula checker Heer-
Hugo,” Journal of Automated Reasoning, vol. 24, no. 1/2, pp. 101–125,
2000.

[10] M. Järvisalo, A. Biere, and M. Heule, “Blocked Clause Elimination,”
in Proc. TACAS, ser. Lecture Notes in Computer Science, vol. 6015.
Springer, 2010, pp. 129–144.

[11] T. Korhonen, J. Berg, P. Saikko, and M. Järvisalo, “MaxPre: An
Extended MaxSAT Preprocessor.” in Proc. SAT, ser. Lecture Notes in
Computer Science, S. Gaspers and T. Walsh, Eds., vol. ????, pp. ??? –
??? (to appear).

[12] K. Korovin, “iProver – an instantiation-based theorem prover for first-
order logic,” in Proc. IJCAI, ser. Lecture Notes in Computer Science,
vol. 5195. Springer, 2008, pp. 292–298.

[13] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental Car-
dinality Constraints for MaxSAT,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 8656. Springer, 2014, pp. 531–548.

[14] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: A Modular
MaxSAT Solver,” in Proc. SAT, ser. Lecture Notes in Computer Science,
vol. 8561. Springer, 2014, pp. 438–445.

[15] N. Narodytska and F. Bacchus, “Maximum Satisfiability Using Core-
Guided MaxSAT Resolution,” in Proc. AAAI. AAAI Press, 2014, pp.
2717–2723.


