MaxSAT Evaluation 2017

Carlos Ansótegui University of Lleida Fahiem Bacchus University of Toronto

Matti Järvisalo University Helsinki Ruben Martins Carnegie Mellon University

http://mse17.cs.helsinki.fi/

SAT 2017, August 31, 2017

Outline

- ► What is new?
- Data
 - Benchmarks
 - Solvers
- Results
 - ► Complete Tracks
 - ► Incomplete Tracks
- More information

What is new?

A lot has changed in the MaxSAT Evaluation 2017 (MSE17):

- New organization
- New rules
- New benchmark selection
- New evaluation tracks
- ▶ New ranking for incomplete tracks
- New execution environment

New organization

We thank the previous organizers for organizing the MaxSAT Evaluation from 2006 to 2016:

► Josep Argelich Chu, Min Li, Felip Manyà and Jordi Planes

The MSE17 is organized by:

- Carlos Ansótegui (University of Lleida, Spain)
- ► Fahiem Bacchus (University of Toronto, Canada)
- ▶ Matti Järvisalo (University of Helsinki, Finland)
- ▶ Ruben Martins (Carnegie Mellon University, US)

New rules

- ► Source disclosure requirement:
 - ► Increase the dissemination of solver development
- ► Solver description using IEEE Proceedings style:
 - ▶ Better understanding of the techniques used by each solver
- ► Benchmark description using IEEE Proceedings style
 - ► Better understanding of the nature of each benchmark

New benchmark selection

- Complete benchmarks:
 - ▶ Benchmark pool: MSE16 benchmarks and new submitted benchmarks
 - Problem:
 - ▶ some benchmark sets are much larger than others
 - ► Solution:
 - Maximum 35 instances per benchmark set
 - Instances selected randomly from the pool of benchmarks
- ► Incomplete benchmarks:
 - ► Problem:
 - ► Complete solvers can solve most benchmarks optimally
 - Solution:
 - Only consider the subset of benchmarks that are not solved optimally under 300 seconds

New evaluation tracks

Evaluation tracks:

- ► Unweighted:
 - Combines the industrial and crafted unweighted and unweighted partial MaxSAT categories from previous MaxSAT evaluations
- ► Weighted:
 - Combines the industrial and crafted weighted and weighted partial MaxSAT categories from previous MaxSAT evaluations
- ► Incomplete:
 - ▶ Two special tracks: unweighted and weighted
 - New ranking criterion
- No-restrictions track:
 - ▶ Portfolio and closed source solvers

MSE 2017 did not include a track for random instances!

New ranking for incomplete tracks

Incomplete ranking:

- ► Before: ranking only considered solvers that got the best solution
- ► Now: we consider how close solvers are to the best solution
- Incomplete score: computed by the sum of the ratios between the best solution found by a given solver and the best solution found by all solvers
 - $\blacktriangleright \sum_{i} \frac{(\text{cost of best solution for i found by any solver})}{\text{cost of solution for i found by solver})}$
 - ▶ For an instance *i* score is 0 if no solution was found by that solver
 - For each instance the incomplete score is a value in [0, 1]

New execution environment

MSE17 was run on the StarExec cluster:

- https://www.starexec.org/
- ► Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
- ▶ 10240 KB Cache, 128 GB Memory
- ► Two solvers per node

Execution environment:

- ► Complete track:
 - ► Time limit: 3600 seconds
 - ► Memory limit: 32 GB
- ► Incomplete track:
 - ▶ Two time limits: 60 seconds and 300 seconds
 - ► Memory limit: 32 GB

New benchmarks

Unweighted (110 new benchmarks):

- extension-enforcement (40)
- ▶ min-fill (28)
- ▶ gen-hyper-tw (42)

Weighted (700 new benchmarks):

- ▶ af-synthesis (40)
- ▶ biorepair (30)
- ▶ rna-alignment (103)
- ▶ css-refactoring (11)
- ► dalculus (96)
- ▶ shiftdesign (30)
- ► causal-discovery (57)
- ▶ metro (30)
- ▶ timetabling (30)
- ► lisbon-wedding (30)
- ▶ min-width (222)
- ▶ cluster-expansion (21)

MSE17 benchmarks

Complete track:

- ► Unweighted (880 benchmarks, 97 new)
- ▶ Weighted (767 benchmarks, 305 new)

Incomplete track:

(selection of benchmarks that complete solvers take more than 300 seconds to find the optimal solution or that no optimal solution is found)

- Unweighted (194 benchmarks)
- ► Weighted (156 benchmarks)

Participating Solvers

- 1. LMHS by Paul Saikko, Tuukka Korhonen, Jeremias Berg and Matti Järvisalo, HIIT, Department of Computer Science University of Helsinki, Finland.
- Loandra by Jeremias Berg, Tuukka Korhonen, and Matti Järvisalo, HIIT, Department of Computer Science University of Helsinki, Finland.
- 3. MSUSorting by Eivind Jahren, Roberto Asín Achá.
- 4. MaxHS by Fahiem Bacchus, University of Toronto, Canada.
- 5. MaxRoster by Takayuki Sugawara, Sugawara Systems, Japan.
- 6. Maxino by Mario Alviano, University of Calabria, Italy.
- Open-WBO by Ruben Martins (Carnegie Mellon University, USA), Miguel Terra-Neves, Saurabh Joshi (IIT-Hyderabad, India), Mikoláš Janota, Vasco Manquinho, Inês Lynce (INESC-ID Portugal).
- **8. QMaxSAT** by Naoki Uemura, Aolong Zha, and Miyuki Koshimura, Kyushu University, Japan.

Solvers

Complete track:

- Unweighted: 8 solvers (6 submitters)
- ▶ Weighted: 10 solvers (6 submitters)

Incomplete track:

- Unweighted: 4 solvers (4 submitters)
- ► Weighted: 4 solvers (4 submitters)

Hors Concours solvers:

- ► Complete unweighted: Open-WBO-MSE16, Z3, CPLEX
- ► Complete weighted: MaxHS-MSE16, Z3, CPLEX
- ► Incomplete: CCEHC, Dist, WPM3-in, SAT4J

Solvers

Complete track:

- ► Unweighted: 8 solvers (6 submitters)
 - ► Open-WBO (Versions: RES & LSU)
 - MaxHS
 - ▶ maxino
 - MSUSorting
 - ► QMaxSAT (versions: QMaxSAT & uc)
 - ► LMHS
- ▶ Weighted: 10 solvers (6 submitters)
 - ► Open-WBO (versions: OLL & LSU)
 - MaxHS
 - ▶ maxino
 - ► QMaxSAT (versions: QMaxSAT & uc)
 - ► LMHS
 - ► Loandra (versions: S, P & I)

Solvers

Incomplete track:

- Unweighted: 4 solvers (4 submitters)
 - maxroster
 - ► Open-WBO-LSU
 - ► MaxHS-inc
 - ► LMHS-inc
- ▶ Weighted: 4 solvers (4 submitters)
 - maxroster
 - ► Open-WBO-LSU
 - ► MaxHS-inc
 - ► LMHS-inc

Results

Complete track: Unweighted

880 instances

Solver	#Solved	Time (Avg)
Open-WBO-RES	652	129.9
MaxHS	651	182.61
maxino	639	99.14
MSUSorting	622	171.96
QMaxSATuc	573	165.19

- Best unweighted solvers take advantage of unsatisfiable cores
- How do they compare against last year solvers (Open-WBO-MSE16) and general optimization solvers (Z3, CPLEX)?

Complete track: Unweighted

880 instances

Solver	#Solved	Time (Avg)
Open-WBO-RES	652	129.9
Open-WBO-MSE16	651	130.61
• • •		
Z3	570	187.51
CPLEX	392	296.84

- ► Almost no improvement compared to Open-WBO-MSE16
- ▶ Much better than general optimization tools (Z3, CPLEX)

Complete track: Unweighted

Unweighted MaxSAT: Number x of instances solved in y seconds

Complete track: Weighted

767 instances

Solver	#Solved	Time (Avg)
MaxHS	538	236.46
QMaxSAT	503	385.18
QMaxSATuc	499	397.82
maxino	498	202.1
Open-WBO-OLL	468	231.88

- ► MaxHS is much better than the remaning solvers:
 - ▶ Uses implicit hitting set approach that combines SAT and IP
- ► QMaxSAT is a good solver for weighted even though:
 - encodes PB constraints into CNF
 - does not take advantage of unsatisfiable cores
- ► How do they compare against last year solvers (MaxHS-MSE16) and general optimization solvers (Z3, CPLEX)?

Complete track: Weighted

767 instances

Solver	#Solved	Time (Avg)
MaxHS	538	236.46
MaxHS-MSE16	533	225.77
Z3	398	260.67
• • •		
CPLEX	348	241.84

- ► Almost no improvement compared to MaxHS-MSE16
- ▶ Much better than general optimization tools (Z3, CPLEX)

Complete track: Weighted

Weighted MaxSAT: Number x of instances solved in y seconds

Increase of time limit to 3600 seconds

What was the effect of increasing the time limit from 1800s to 3600s?

► Unweighted:

► Weighted:

Solver	1800s	3600s	Solver	1800s	3600s
Open-WBO-RES	636	652	MaxHS	517	538
MaxHS	636	651	QMaxSAT	470	503
maxino	631	639	QMaxSATuc	463	499
MSUSorting	606	622	maxino	479	498
QMaxSATuc	557	573	Open-WBO-OLL	446	468

- \blacktriangleright Usually ${\sim}20$ more benchmarks solved
- ► Some solvers benefit more than others
- Ranking would be different in the weighted track!

Incomplete track: Unweighted (60 seconds)

194 instances

Solver	Score (avg)	#Solutions	#Best Solution
Open-WBO-LSU	0.732	175	56
MaxHS-inc	0.662	177	17
maxroster	0.643	141	75
WPM3-in [†]	0.625	193	25
SAT4J [†]	0.585	161	15
LMHS-inc	0.561	157	21
$Dist^\dagger$	0.526	147	48
CCEHC [†]	0.526	124	65

- Open-WBO-LSU is not a good complete solver but can quickly find high quality intermediate solutions for unweighted MaxSAT
- Score-based ranking favors solvers that find solutions
- ► Prior ranking based on finding the best solution is very different!

Incomplete track: Unweighted (300 seconds)

194 instances

Solver	Score (avg)	#Solution	#Best
maxroster	0.846	179	116
Open-WBO-LSU	0.694	175	43
MaxHS-inc	0.670	182	33
SAT4J [†]	0.593	175	16
CCEHC [†]	0.580	149	57
LMHS-inc	0.570	176	20
WPM3-in [†]	0.552	193	20
Dist [†]	0.522	151	48

- ▶ maxroster is much better with 300 seconds:
 - ▶ It outperforms the other solvers in both score and best solutions!
- ► Stochastic solver CCEHC can often find the best solution

Incomplete track: Weighted (60 seconds)

156 instances

Solver	Score (avg)	#Solution	#Best
maxroster	0.800	147	65
WPM3-in [†]	0.758	151	24
SAT4J [†]	0.751	146	16
LMHS-inc	0.711	146	10
Open-WBO-LSU	0.677	141	37
MaxHS-inc	0.669	141	17
Dist [†]	0.509	98	27
CCEHC [†]	0.473	90	27

- maxroster clearly outperforms other solvers
- ► Stochastic solvers often find the best solution

Incomplete track: Weighted (300 seconds)

156 instances

Solver	Score (avg)	#Solution	#Best
maxroster	0.834	149	78
WPM3-in [†]	0.767	152	19
SAT4J [†]	0.766	151	8
MaxHS-inc	0.760	148	26
LMHS-inc	0.740	145	6
Dist [†]	0.523	104	22
CCEHC [†]	0.519	103	20
Open-WBO-LSU	0.496	92	34

- maxroster clearly outperforms other solvers
- Score ranking differs substantially from best ranking
- Open-WBO-LSU cannot find many solutions because it was killed for reaching the memory limit before outputting the best solution

No restrictions track

- Only one submission
- ► Solver "aurora borealis":
 - ► 1QBit company
 - Incomplete solver
 - ► Only supports unweighted MaxSAT without hard clauses
 - ► Did not compete since unweighted MaxSAT track contains hard clauses

Webpage

MaxSAT Evaluation 2017 webpage

http://mse17.cs.helsinki.fi/

- ► Tables with average times and number of solved instances
- Complete ranking tables
- Cactus plots
- Detailed results for each instance
- Description of the solvers
- Source code of the solvers
- Partial description of the benchmarks
- ▶ Benchmarks and log files are available for download
- ► SQLite database with all results

Achievements and Failures

Achievements:

- ▶ We now have several available open source MaxSAT solvers
- ► All MaxSAT solvers have a description using IEEE Proceedings style
- Benchmark submission was high (particularly for weighted problems)
- Benchmark selection is more balanced between benchmark domains than before

Failures:

- ► Still missing descriptions for several benchmark domains
- ► Lower solver participation in the complete track
- Incomplete track did not have many solvers since most incomplete solvers target random instances

Thanks

Thanks to the people that contributed solvers and benchmarks:

Thanks to StarExec for allowing us to use their cluster:

https://www.starexec.org/

